SUPERSONIC FLOW OVER SHARP-~-EDGED WINGS

G. P. Voskresenskii, A. S. Ilt'ina, UDC 533.6.011.5
and V. S, Tatarenchik

§1. A numerical solution of the problem of steady supersonic flow over sharp-edged wings with
“shock wave attached to the leading edge was considered in [1]. However, the results presented there refer to
wings with a flat upper surface. The present paper gives some results of calculations for wings with curved
upper and lower surfaces.

The method, the codes, and the computer solution for the problem are the same as in {1-3]. As was
done in these references, the problem was considered in a rectangular coordinate sysem x, y, z with the
origin at the leading edge of the wing. The plane z =0 is a plane of symmetry for the wing, and also for the
entire flow, since slip is excluded in order to shorten the calculations. The wing surface is given by the
function y =G, z) and the boundary of the flow region perturbed by the wing is determined by the desired
function y=F(x, z).

The problems for the upper and lower surfaces of the wing are considered separately, because the
boundary of the perturbed region rests on the wing leading edge. The gasdynamic functions in the perturbed
region are determined from the boundary problem for the system of differential equations in partial deriva-
tives (the equations of momentum, continuity, and energy) governing the flow of an inviscid gas. Since the
projected components of the sound velocity on the x axis are assumed to be larger than the local sound veloc-
ity, the system is hyperbolic in x,

In order to obtain the initial data for the problem the flow over the wing leading edge is calculated on
the assumption that the wing has a conical surface andit makes contact withthe remaining wing surface in the
initial plane x =x; without discontinuity in the first derivative, A conical flow of this kind is determined by a
time-dependent method in terms of similarity of the coordinate x.

The boundary conditions are set up at the wing leading edge and at the boundary of the flow region per-~
turbed by the wing. On the lower wing surface the boundary of the perturbed region corresponds to the shock
wave and on the upper surface it corresponds to the shock wave or to the characteristic surface.

At the leading edge an asymptotic approximation to the solution is used, of which the main term corre~
sponds to flow over a wedge washed by a high-speed flow normal to the leading edge at this point, The as~
ymptotic solution differs for the upper and lower parts of the wedge. As a rule, the flow undergoes compres-
sion below the wing and expansion above the wedge. In this work we used a joint solution algorithm for both
parts of the wing, where the type of boundary conditions at the leading edge corresponded to local values of
the approach angle of the external flow velocity to the wing surface.

The determination of the conditions at the outer boundary can be briefly explained as follows, First,
conditions are set up for the shock wave, If the difference between the gas pressures ahead of and behind
the shock wave is larger than some value €, then they are considered to have been set up correctly. If this
difference is less than €, then at the given section of the perturbation region the shock wave is regarded as
baving degenerated into a characteristic surface, which allows the boundary conditions to be simplified.

The problem was solved numerically to second-order aceuracy [2, 3] in the regions X =X, +nAx, with
successive transition from one region where the solution has already been found to the adjoining region
X =X, + (n+1)Ax.

For convenience in constructing the algorithm the solution region is normalized by introducing the
auxiliary variables
=58 =U—GNF —G); 0 =zH@); 0<<EST; 0<CO< Y,

where £ =0 is the wing surface; £ =1 is the boundary of the flow reglon perturbed by the wing; and H is the z
coordinate of the wing leading edge.
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The mesh in the solution plane has 189 computational points, H is formed from 21 rays with z =const,
each having 9 points. The computational step size between the rays is A6=0,05, and between the nodes it is

AE=0.125,
The upper and lower wing surfaces are given by the equation

y = Gt, 0) = 4c(1 — MOyt +all — ¢ — (1 — 8 )u()],

where

a=—C u _ (_:_Ea__)mi
=10 O =tl\—p—) -

The quantity ty, which determines the length of the conical nose, was taken to be 0.05, and the coefficients
b, e, and d were 0.5, 0.25, and 0.25, respectively, The quantity ¢ determines the curvature of the wing sur-
face. For example, for a triangular wing with g =0 the maximum value of the relative curvature in the plane
of symmetry is c. Inthe examples considered below the values of the coefficients for the upper and lower

surfaces are cy and cj.

It is assumed that the wing leading and trailing edges lie in the plane y =0, The leading edge is given
by the equation =1 and the trailing edge by the equation 1 —t~ (1~ pi*eyut) =0, Here the previously men-
tioned coefficient p, determines the sweepback of the trailing edge. For f;,=0 we obtain a wing which has a
triangular planform; for u,> 0 it is swept back and for <0 it is rhombic.

For the calculation we chose values of g, for which the trailing edge is supersonic and does not affect
the flow within the wing. Since the flow over each wing surface is calculated independently, these surfaces
are continued beyond the trailing edge without disturbing the smoothness, and the presence of the trailing edge
is not taken into account during the computation. However, the computational results are chosen only from
the region lying within the wing contour. Data for the trailing edge can be obtained by interpolating the func-
tions between the rays located before and after the trailing edge.

A special feature of the surface of the wing considered in this paper is a decrease in the relative thick-
ness of the sections at their ends, This surface shape was chosen in order to demonstrate the possibility of
obtaining flow with a continuous transition from a compression region to an expansion region, in the area of
the leading edge of the top surface. '

In the calculations we used dimensionless values of the gasdynamic functions, The pressure and the
density were referenced to their values in the oncoming stream and the velocity vector to the quantity
YDPwo/Pw. The linear dimensions were referenced to the wing root chord,
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§2. Calculations of three~dimensional flows by a finite-difference method give a great deal of infor-
mation on the fields of the gasdynamic functions in the flow region perturbed by the wing, but here we pre~
sent only some of the typical results,

Figures 1-5 show the pressure distributions at M, =3.0, for the transverse sections x=const, over the
wing surface (solid lines) and at the boundary of the perturbed region (dashed line), which may be the shock
wave or the characteristic surface. The figures also show the wing contours in plan view and the contours
of the transverse sections of the wings, The dot—dash lines show the positions of the perturbed-region bound-
aries and a cross indicates transition of a shock wave into a characteristic.

The curves in Fig. 1 refer to the lower surface of a triangular wing (@=5°, x=45°, El =0.04, py=0); the
curves in Figs, 2 and 3 refer to the upper surface of a triangular wing (@=5 and 8°, x =45°, u—O 05, py=0);
and the curves in Figs. 4 and 5 refer to the upper surface of swept-back and rhombic wings @=5°, x =45°,

=0.05, py=0.25).

For all the wings the pressure distribution curves in the transverse section, for both the lower and the
upper wing surfaces, show that the least pressure occurs in the leading~edge section, located immediately
behind the conical nose. This is due to the shape of the wing surface, for which the smailest slope lies just
behind the conical nose.

For all the wings the curves of pressure distribution behind the shock wave are characterized by the
fact that there is a region of pressure drop at the wing leading edge, This increases with increasing distance
from the wing nose, It is associated with the presence of a knee in the shape of the shock wave section, e.g.,
for the lower wing surface it can be clearly seen at x=0.75 and 1.0 (see Fig. 1). This is apparently due to the
fact that the relative thickness of the wing reduces strongly at its ends.

While there is always a flow expansion and the nature of the flow is determined only by the angle of
attack for wings of flat plate type (above the upper surface), at a nonzero angle of attack the nature of the
flow for contoured wings is determinednot only by the angle of attack, but also by the local slope of the plane
tangent to the wing surface. Therefore, at a given angle of attack, depending on the shape of the profile, above
the upper surface there may be either compression flow or expansion flow, or there may be both, with a con~
tinuous transition from a compression region to an expansion region,

This is confirmed by Figs, 2-5, where the slope of the surface tangent to the curve F=F(x, z) is com~
pared with the slope tangent to the section of the characteristic surface at x=0,75 and 1,0, for flow over the
upper surfaces of different wings., The comparison showed that there is little difference. The curves p=
p(0.75, z) and p(1, z) for £ =1 also show that for z > 0,7 the shock wave is almost no different from the char-
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acteristic surface, except for the fact that at the wing leading edge there is a difference in pressure on the
body and in the wave, and therefore there is a flow expansion region at the end of the wing,

The knee point in the shock wave contour at x=0,75 and 1.0 also occurs for the upper surface, since
the pressure distribution for it is the same as for the lower surface.

A comparison of the computed data for flow over a triangular wing at @=5 and 8° (see Figs. 2 and_ 3)
shows us how the gasdynamic functions vary with angle of attack. No other peculiarities in the distribution
of the functions were observed for a change of angle of attack. There is a natural general increase in pres-
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sure on the lower surface of the wing and a decrease on the upper surface, The "decay" of the shock wave
into a characteristic surface above the upper surface of the wing for @=8° occurs at z 0.5, which is some-
what less than the value of z for a=5°,

Calculations of the flow over a triangular wing with the same surface shape but with a different sweep-
back angle ¥ =60° and a different Mach number M,=4.0 also showed that the above-mentioned features in the
pressure distribution and shock-wave shape were also found at this flow condition.

Figures 6-8 show the distribution of pressure difference Ap =5l --f)u over triangular wings with lead-
ing edge sweepback of x =45° at angle of attack @#=8° and M,, =3.0. The solid curves in Fig, 6 correspond
to a wing with a conical surface (c =0,05, cl =0.03), and the dashed curve shows the pressure distribution
of Ap for a triangular plate with the same sweepback at x=1 © —cl~ 0). Figure 7 shows the pressure differ-
ence over a wing of biconvex proflle (cu 0.05, ¢;=0,03), and Flg. 8 shows the distribution over a wing with
a planoconvex profile (cu 0.05, c =0). The data for the flat surface of this wing and for the triangular plate
are taken from [1].

Figures 6-8 also show the pressure difference along the chord z=0,5. It can be seen that the loading
distributions are similar for the conical wing and the biconvex wing, but it is different for the planoconvex
wing. At z=0.5 the loading decreases withincrease inx for the biconvexwing, while it increases for the plano-
convex wing, This result cannot be explained, evidently, by the effect of curvature of the mean surface alone,
For example, a wing with a planoconvex profile Eu =0.02, ¢;=0 at o> 0 will have the derivative dAp/dx> 0 in
the plane of symmetry, while the wing considered above with a biconvex profile and the same curvature of its
mean surface has dAp/dx<0,

Hence, it follows that conclusions regarding the aerodypamic properties of triangular wings in a super-
sonic flow with a shock wave attached to the leading edge, based only on the nature of the change of the mean
surface, may be in error. It is necessary to take into account the nature of the variation of the top surface
and especially the lower surface of the wing.

During computation of the flow over the two wing surfaces the aerodynamic coefficients Ct, Cn, and my,
were also evaluated. The coefficients C; and Cj, were calculated in a wing-fixed coordinate system. The co-
efficient m, was computed relative to the wing apex and referenced to its root chord. The coefficients Cp
and m, were calculated for the two surfaces, on the assumption that the pressure is zero on the other side.

TABLE 1

M, 31 3] 3 3 3 3 3 4 3
a o of o 5 5 5 8 5 5
1 45 | 45 | 45 | 45 45 45 45 60 45
Po 0,00 | 025 |—05| 000 | 025 | —05 | 000 | 000 | 0,00

Lower surface

‘_l- 0,05 (0,05 10,05 0,04 0,04 0,04 0,03 0,02 0,00

¢, 0,0068 |0,0069}0,0060| 0,0058 | 0,0067 | 0,0057 | 0,0039 | 0,0013 | 0,0000
c, 0,2387 | 0,2374 | 0,2354 | 0;2937 | 0,1451 | 0,2305
m, 0,1450 | 0,1655 | 0,1194 | 0,1746 | 0,0909 | 0,1535

Upper surface

¢g 0,05 0,05 0,05 | 0,05 0,05 0,05 0,05 0,05 0,05
c,  |0,00680,0069/0,0060 0,0048 | 0,0054 | 0,0044 | 0,0039 | 0,0032 | 0,0048
c 0,1138 | 0,1126 | 0,1133 | 0,0880 | 0,0587 | 0,138 .
m 0,0656 | 0,0745 | 0,0547 | 0,0500 | 0,0322 | 0,0656

Complete wing

C, 0,0136 10,0138/0,0120] 0,0106 | 0,0121 | 0,0101 | 0,0078 | 0,0045 | 0,0048

¢, 0,1249 | 0,1248 | 0,1221 | 0,2057 | 0,0864 | 0,1167
0424 | 0,27 | 0,423

m, 0,0794 | 0,0010 | 0,0647 | 0,246 | 0,0587 | 0,0879

z, 0,615 | 0,74 0,50

0,67 0,78 0,55

767



The aerodynamic coefficients Cy and C, in the body~fixed coordinate system can be recalculated as co-
efficients C, and Cy in the velocity coordinate system, as is known, using the formulas

Cp,=C,sina + C, cosd, Cy=0C, cosa — Csine,
but the coefficient m, remains unchanged. -

Table 1 shows values of the coefficients Ci, Cp, and my both for the separate wing surfaces and as a
total for the entire wing. The coefficient C; for the total wing was obtained by adding the coefficients for the
upper and lower wing surfaces, while the coefficients C,, and m, were obtained from the difference in the co~
efficients for the upper and lower wing surfaces.

The last column of Table 1 shows the location of the aerodynamic focus with respect to angle of attack,
i.e., the point of application of the increment of wing lift force during a small change of angle of attack. Since
the profile of the wings considered is asymmetrical, the focus does not coincide with the center of pressure,
which is the point of application of the total lift force. To determine the position of the focus supplementary
calculations were made of flow over a wing at @+ 0.5°, The focus was determined relative to the wing nose
as a fraction of the root chord. B

For the parameters M, =3.0, ¢=5° and ¥ =45°, Table 1 shows the values of C, and the focus xg of flat
wings of the same planform as the curved wing. These data were obtained from reference [1], andareprinted
below the corresponding values of the coefficients Cy and x¢ of the curved wing.

To verify the calculations we compared values of the Bernoulli integral in the incident stream with its
values in regions perturbed by the presence of the wing. The difference in these values did not exceed 1% for
individual cases and was mainly less than this.

More complete results of the calculations for the upper and lower halves of the flow are given in [4],
which tabulates the position of the perturbed region boundary, the velocity components, the pressure, andthe
density at 55 points in 4 cross sections for a triangular and a swept-back wing. For the rhombic wing tables
are given for 5 eross sections,
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